NR AVGU
AU Williams,S.K.; Lee,D.
TI Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies
QU Journal of Separation Science 2006 Aug; 29(12): 1720-32
PT journal article; review
AB This review summarizes developments and applications of flow and thermal field-flow fractionation (FFF) in the areas of macromolecules and supramolecular assemblies. In the past 10 years, the use of these FFF techniques has extended beyond determining diffusion coefficients, hydrodynamic diameters, and molecular weights of standards. Complex samples as diverse as polysaccharides, prion particles, and block copolymers have been characterized and processes such as aggregation, stability, and infectivity have been monitored. The open channel design used in FFF makes it a gentle separation technique for high- and ultrahigh-molecular weight macromolecules, aggregates, and self-assembled complexes. Coupling FFF with other techniques such as multiangle light scattering and MS provides additional invaluable information about conformation, branching, and identity.
ZR 126
MH Fractionation, Field Flow/instrumentation/*methods; Macromolecular Substances/*chemistry; Polymers/*chemistry; Polysaccharides/*chemistry; Proteins/*chemistry; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Sensitivity and Specificity; Surface Properties
AD Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA. krwillia@mines.edu
SP englisch
PO Deutschland